
© 2008 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

1

Availability Digestthe

GRIDSCALE – A Virtualized Distributed Database
July 2008

As its name implies, GRIDSCALE, from xkoto, Inc. (www.xkoto.com), is a
scalable grid of database servers. GRIDSCALE virtualizes a pool of
database servers so that they appear to be a single, consistent database
server to the applications they serve. The database servers may be geographically dispersed for
disaster tolerance. The failure of any one database server is transparent to the users of the
database. This virtual database is readily scalable by adding or subtracting additional database
servers on-the-fly.

The Three-Tier Syndrome

Contemporary Three-Tier Architecture

Common practice today is to implement systems in three tiers:

 The Presentation Tier manages data received from and sent to the clients of the system.
Perhaps the most widespread example of a presentation tier is that comprising web
servers.

 The Application Tier processes requests from clients received from the presentation tier
and returns results to the clients through the presentation tier.

 The Database Tier provides the application database needed by the application tier to
perform its processing functions.

In typical systems today, the presentation tier and the application tier are virtualized. That is, they
comprise a pool of similar servers, any of which can provide the required processing. Should a
server fail, it can be removed from the pool; and the rest of the pool will continue to carry the

web
servers

application
servers

active
database

server

backup
database

server

data
base

database cluster

clients

Contemporary Three-Tier Architecture

virtualized web
server pool

virtualized application
server pool

http://www.xkoto.com/

© 2008 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

2

system load with no interruption to the users. If more capacity is needed in a tier, additional
servers can be added to help carry the load.

However, the database tier is typically a single system – often a cluster. Although it may be
configured as an active/backup system with redundant data storage such as RAID, it is not
scalable without installing larger servers since only one server is active at a time. Furthermore,
failover is not transparent to the user. Clusters typically take minutes to failover, and that is only if
there has been no database corruption caused by the failure of the primary server.

Virtualized Three-Tier Architecture

There are great benefits to be obtained if virtualization could be extended to the database tier. By
virtualizing a pool of database servers, the system can be made impervious to database failures.
Furthermore, query loads can be spread among the individual database servers, thus allowing
scalability by adding additional database servers.

This is the mission of GRIDSCALE.

GRIDSCALE

GRIDSCALE provides a single-image view of a pool of database servers, each managing its own
private database. The database servers may be geographically distributed to provide disaster
tolerance. If a database server is lost, it is automatically evicted from the server pool; and
transactions are handled by the remaining database servers. GRIDSCALE maintains its own SQL
statement log to resynchronize an evicted server upon its return to the pool.

GRIDSCALE ensures database consistency so that all databases are always in the same state. It
does this through asynchronous transaction replication. Each operation within a transaction is
sent simultaneously to all database servers to be executed. GRIDSCALE guarantees that each
server will execute transactions in exactly the same order so that read consistency is maintained
across the pool.

1

GRIDSCALE provides high performance even while managing synchronized copies of the
database. Unlike synchronous transaction replication systems, which must wait for all of the
database servers to commit the transaction before completion is returned to the application,
GRIDSCALE will return completion as soon as the transaction completes on just one database
server. Typically, there is at least one local database server so that transaction response time is
substantially that of a standalone transaction processing system.

Queries are load-balanced across the database servers. A read operation is directed to the
database server that is most likely to deliver the fastest response. A byproduct of this is that for

1 GRIDSCALE can also be used in an “operation” mode in which the atomic element is a single read or write operation
rather than a transaction. The description of this mode is the same as that for the transaction mode, where a single
operation can be considered a transaction.

web
servers

application
servers

clients

Virtualized Three-Tier Architcture

virtualized web
server pool

virtualized application
server pool

hh
data
base

database
server

virtualized
database pool

GRIDSCALE

© 2008 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

3

write-seldom, read-often applications, a GRIDSCALE virtual database is nearly linearly scalable
by adding additional database servers to spread the read load. In addition, query-only
applications may run independently on the database servers.

GRIDSCALE supports views, triggers, materialized views, and stored procedures. It also
replicates DDL commands entered by operations personnel to reconfigure the virtualized
database.

While GRIDSCALE works with SMP systems, GRIDSCALE also allows the use of heterogeneous
commodity servers as the database servers rather than large SMP systems. Since all
GRIDSCALE database servers are running in an active/active configuration and are contributing
to load handling, two or more small systems can match the capacity of a much more expensive
pair of large SMP systems needed for a database cluster. This is because only one of the
systems in a cluster can be active at any one time. Currently, GRIDSCALE supports IBM’s DB2
database running on IBM AIX, Linux, Microsoft Windows, or Sun Solaris. Support for SQL Server
databases is in beta now, and support for other databases will be released in the future.

GRIDSCALE is noninvasive. It can be installed for use by any application without modification
provided that the application makes database calls via ODBC, JDBC, DB2 CLI, native DB2 SQL
calls, or SQL Server with .NET calls.

GRIDSCALE is managed from a single point via a web or command line interface.

GRIDSCALE Architecture

GRIDSCALE comprises three components:

 Application Drivers that provide standard interfaces to the GRIDSCALE virtualized
database.

 A GRIDSCALE server that orders application requests and passes them to the database
servers in such a way as to guarantee consistency.

 Database Connectors that manage the execution of transaction I/O requests in the order
specified by the GRIDSCALE server.

database
server

Connector

data
base

database
server

Connector

data
base

database
server

Connector

data
base

application

JDBC
Driver

application

DB2 CLI
Driver

application

ODBC
Driver

GRIDSCALE
virtualized
database

server

GRIDSCALE

© 2008 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

4

Application Drivers

GRIDSCALE provides drivers for applications to use to access GRIDSCALE servers. These
drivers support ODBC, JDBC, and DB2 CLI as well as native DB2 SQL calls. SQL Server .NET
calls will be supported. If an application uses one of these interfaces to make its database calls, it
can use GRIDSCALE without modification simply by linking in the appropriate driver.

GRIDSCALE Server

The GRIDSCALE Server (GSS) is the heart of the GRIDSCALE system.
2

It receives all database
transaction requests from the applications and serializes them for the database servers.

The GSS analyzes each operation within a transaction and determines which are read and write
operations. It sends all writes (inserts, updates, deletes) to all database servers.

It analyzes each read request to determine which database server is best able to handle the read
request. It may select a database server based on the server’s load, on its computing capacity,
and on the distance separating the server from the GSS. Having selected a server, the GSS then
sends the read request to that server but also sends a virtual read request to all of the other
servers so that they may appropriately lock the row being read.

Each read or write request is sent with an appropriate lock and a sequence number. The
sequence numbers guarantee that all operations are performed by each database server in
exactly the same order.

The GSS typically runs on its own hardware server, where best practices suggest a two-
processor, two-gigahertz. server running Linux, AIX, Solaris, or Windows. An active/backup pair
of servers may be configured to protect against a GSS failure.

A GSS comprises the following six modules that in concert process a transaction request.

Analyzer Module

The Analyzer Module parses the SQL statement and determines which read and write requests
are being made. It passes these as elemental operations to the other modules in the GSS.

2 Ferguson, Gregory; Heisz, Jeffrey; Tung, David; Jamal, Muhammad Mansoor; Kassam, Ariff; Method and System for
Load Balancing a Distributed Database, U.S. Patent 20070203910; August 30, 2007.

Analyzer Module

Scheduler

Batch module

Rewriter Module

Sequencer

Lock Module

Scheduler
Table

Server Load
Table

Log
Table

cache

GRIDSCALE Database Load Balancer

transaction

database
server

© 2008 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

5

Lock Module

The Lock Module determines what kind of lock is to be carried with each data operation in order
to guarantee consistency of the database. The ANSI SQL isolation levels are supported:

 Read Uncommitted (dirty reads) - Unimpeded reading of a row or record is provided.

 Read Committed - If a transaction reads a row, it will always get the same data on
subsequent reads of that row.

 Repeatable Read - Only the results of committed transactions are available to be read.

 Serializable - Once a transaction reads a row, no other transaction may modify that row
until the original transaction has been committed.

A lock carries four pieces of information: a Lock Number, which uniquely identifies the lock and
associates it with a particular row or record; a Lock Type, which specifies whether the lock is a
read or a write lock; a Lock Scope, which specifies how long the lock is to be held (for the
read/write operation or until the transaction is committed); and a Lock Sequence, which specifies
the sequential position of its associated operation with respect to all other operations.

Sequencer

The Sequencer receives the results from the Analyzer Module and assigns a sequence number
to each of the transaction operations that will access a particular database row or record.
Sequence numbers are assigned so that the transaction operations will be ordered across all
transactions, guaranteeing that all transactions and all operations within each transaction are
executed in exactly the same order in each database server. The sequence number assigned to
each database read/write operation is associated with the lock for that operation, as described
above.

Scheduler

The Scheduler tracks the execution of the respective transactions and their operations on the
database. It receives the operations that make up a transaction from the Analyzer Module, the
locks associated with each operation from the Lock Module, and the sequence number
associated with each lock from the Sequencer.

The Scheduler determines the distribution of each of the operations among the database servers.
Write operations (inserts, updates, deletes) are sent to all database servers along with their
associated locks and sequence numbers.

For read operations, the Scheduler determines the database server best capable of handling the
read. This determination is based on the current server loads, the power of the servers (if
heterogeneous servers are used), and the communication latency (i.e., the distance) of the
servers from the GSS. The read request is sent to the preferred database server. However, a
virtual form of the read request is sent to all other database servers so that they may apply the
appropriate read lock to their copies of the row or record for the duration of the transaction. In this
way, the system query load is balanced among all of the database servers in the virtualized pool.

Should a read operation fail due to a server problem or a network problem, the GSS can submit
the read request to another database server.

© 2008 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

6

The Scheduler tracks the responses from the various database servers and determines when a
response is to be returned to the application. For reads, the result is returned as soon as the
Scheduler receives the response from the selected database server.

For writes, completion is returned to the application as soon as one of the database servers has
reported a successful write to the Sequencer. Similarly, for transactions, the commit response is
returned to the application as soon as one database server has reported a successful commit to
the Scheduler. In the event that all servers return an error, an error status is returned to the
application.

The Scheduler has three tables that it uses to execute its functions:

 The Scheduler Table tracks the results of database operations. An entry is made into the
Scheduler Table for each operation received by the Scheduler. Among other information,
a table entry contains the operation, the operation’s sequence number, and the response
to the operation by each of the database servers.

The response field contains success/fail responses from each database server. It may
also include other information such as status, warnings, and parameter return
information. It is the Scheduler Table response field that determines when the Scheduler
can respond to the application. A read operation is complete when the read data is
returned from the selected database server. A write operation or a transaction commit is
complete when the first success response is received from a database server.

Once an operation has been committed or rolled back by all database servers, its entry is
deleted from the Scheduler Table.

 The Server Load Table tracks the current load on each database server. This load
information is returned to the Scheduler typically with each operation and may include the
number of operations waiting to be performed at the database server, the processing
speed of the server, and the distance separating the server from the GSS. It is the Server
Load Table that the Scheduler consults to determine to which database server to send a
read request.

 The Log Table contains an entry for every committed operation (it is a standard
transaction log as found in most transaction managers). The operations associated with a
transaction are written to the Log Table before the transaction is committed.

The Log Table is used to recover a database server that has left the database pool for
any reason – planned or unplanned (a crash) – when that server is to be returned to
service.

If the Scheduler finds that one database server has failed to complete an operation that was
successful at all other database servers, it can evict that server from the database server pool for
analysis and repair.

Rewriter Module

The Rewriter Module analyzes the SQL statements contained within a transaction and stores the
template represented by that transaction in the module’s cache memory. This is the standard
SQL prepare function. If a later SQL statement that matches this template is received, then only
the values in each field need to be sent to the database servers rather than the lengthy SQL text
statement.

In addition, the Rewriter Module looks for any fields that are nondeterministic. That is, the value of
such a field received from the various database servers may be different. Examples of such fields

© 2008 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

7

are random numbers and time stamps. The Rewriter Module will replace these fields with specific
values so that they will be deterministic across the pool of database servers.

Batch Module

The Batch Module determines whether a set of operations in a single transaction can be sent as
a batch to the database servers. An example of a set of operations that can be batched is a
sequence of insert operations.

Database Connectors

A Connector accepts sequenced operations from the GSS and manages their executions by the
database server. A Connector has available to it a Session Queue for each client session and a
Record Queue for each row or record in the database.

A single operation can affect several database rows
or records. When an operation is received, it is
placed in the appropriate Session Queue along with
all of its locks and sequence numbers. Lock and
sequence number entries are also entered into the
Record Queues for each record that is affected by
this operation. The queues are ordered by
sequence number.

The operation can be executed when all of its
components - the Session Queue entry and all
Record Queue entries - are at the head of their
respective queues. Upon completion, the
completion status and data, if any, are returned to
the Scheduler in the GSS.

The Connector can detect potential deadlocks. If it
does so, one of the conflicting operations is aborted.

For recovery purposes, the Connector stores the last transaction that it successfully completed.

Networking

All communication between the GSS and its clients and database connectors is over high-speed
TCP/IP links using the GRIDSCALE Database Routing Communication Protocol (DRCP). These
links may be encrypted.

Continuous Availability

GRIDSCALE provides many high-availability and continuous-availability features.

Active/Active Database Servers

All database servers are running in an active/active pool. Therefore, not only can the query load
be distributed among all servers, but the loss of any server is transparent to clients. A server can
be evicted from the server pool because its heartbeat is lost, because it does not respond, or
because it gives an erroneous result.

In the event of a server eviction, transaction load is simply redistributed to the remaining
database servers.

Session
Queue

Record Queues

operation

© 2008 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

8

Database Server Recovery

When a database server that had been removed from the server pool is to be reinstated, the GSS
can query it to determine the last transaction that the database server committed. Using this as a
marker, the GSS can then replay all subsequent transactions to the recovering database server
from the GSS Log Table, thus bringing the database server back into synchronization with the
database server pool.

Disaster Tolerance

One or more of the database servers can be located at a data-center site remote from the data
center at which the GSS is located. This provides tolerance to a disaster that takes out the local
site. In the event of an outage of the local site, the application servers can reconnect to the
remote database server and can continue operation.

Eliminating Planned Downtime

Via GRIDSCALE’s management console, a database server can be frozen. This action removes
it from the server pool but maintains the GSS connection to that database server.

The frozen database server may then be upgraded or maintained. When it is ready to be returned
to service, it is unfrozen. The queue of transactions that had occurred while it was frozen is
drained to it from the Log Table, and the database server is returned to service.

In this way, upgrades may be rolled through the database pool one node at a time.

GRIDSCALE Server Crash

The GSS is the heart of the GRIDSCALE environment. Should it be lost, the virtual database
would be down. To protect against this, the GSS can be configured as a primary/backup pair. In
this case, the memory-resident Scheduler Table and the Load Table are replicated to the backup
system upon each update. In that way, the backup GSS is prepared to take over instantly.

backup
GRIDSCALE

active
GRIDSCALE

applications

database
server

Connector

data
base

remote
database

server

Connector

data
base

local

database
server

Connector

data
base

local

© 2008 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

9

Takeover is subsecond once a primary failure is detected. Failover detection typically takes about
five seconds (loss of five one-second heartbeats).

To provide continued support for database server recovery, the Log Table is also replicated to the
backup system. The completion of a transaction is noted in both the primary and backup Log
Tables before the transaction is reported to the application as committed.

Should the site containing the GSS be taken out by a disaster of some sort, operations can
continue with a remote data center if one has been provided.

Management

GRIDSCALE provides a web interface and a command-line interface to configure and manage
the virtual database environment. Via this interface, database administrators can add and remove
database servers, freeze and unfreeze database servers, monitor the performance of database
servers, view alerts generated by GRIDSCALE for detected faults or anticipated problems, and
generate performance reports.

Administrators can issue DDL commands to reconfigure the database. These commands will be
sent synchronously to all database servers for simultaneous execution.

Graphical dashboards are provided to show the relative performance of each database server,
server workloads, transaction rates, and other system parameters.

Performance

The GRIDSCALE virtual database is easily scalable by adding additional nodes on-the-fly. One
test run by an xkoto customer showed the capability for a four-node system to process 15,000
reads per second.

GRIDSCALE virtualization does add some minor overhead to database processing. However,
tests have shown a nearly linear scalability, with each database server after the first adding about
85% of its capacity to the virtual database. This has been demonstrated for systems up to eight
nodes and is projected to continue for up to thirty nodes.

xkoto

xkoto is a fairly new venture. It is a privately held company founded in Canada in 2005, and it first
delivered product in 2006. It now has installations throughout North America and Europe in the
fields of financial services, healthcare, travel, telecommunications, and retail.

Its partners include IBM, Microsoft, VMware, Citrix, Sun Microsystems, and HP. The GRIDSCALE
product has been thoroughly tested by IBM for the DB2 database, and IBM currently provides
product support for GRIDSCALE.

Where did the name “xkoto” come from? It is reportedly a transliteration of two Greek words
loosely translated as “out of darkness, out of chaos.”

Summary

GRIDSCALE brings virtualization for its supported databases to the final tier of today’s popular
three-tier architecture. Entire data centers now can be virtualized pools of servers providing their
respective functions with active/active load-sharing and continuous availability with no failover. As
with the presentation and application tiers, the database tier is readily scalable by adding
database servers to the database pools.

	GRIDSCALE(– A Virtualized Distributed Database
	The Three-Tier Syndrome
	Contemporary Three-Tier Architecture
	Virtualized Three-Tier Architecture

	GRIDSCALE
	GRIDSCALE Architecture
	Application Drivers
	GRIDSCALE Server
	Database Connectors

	Continuous Availability
	Active/Active Database Servers
	Database Server Recovery
	Disaster Tolerance
	Eliminating Planned Downtime
	GRIDSCALE Server Crash

	Management
	Performance
	xkoto
	Summary

