
© 2009 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

1

Availability Digestthe

www.availabilitydigest.com

HP’s NonStop Synchronous Gateway
June 2009

HP has recently announced the release of its NonStop Synchronous Gateway (SG). The SG
allows third-party synchronous-replication engines to participate in transactions coordinated by
the NonStop Transaction Management Facility (TMF).

Data replication is used to keep distributed databases in an active/active network
1

synchronized.
There are two fundamental types of data replication – asynchronous replication and synchronous
replication.

Synchronous replication
2

solves the asynchronous-replication problems of data loss following a
node failure and of data collisions.

3
However, it brings with it its own problem - application

latency. The application must wait for each operation to complete over the application network
and for the updates to be committed to all copies of the database, thus delaying transaction
completion. Since a big factor in these delays is communication channel latency, application
latency limits the distance by which nodes in an active/active system can be separated, thus
imposing limits on the degree of disaster tolerance that can be achieved. Typical separation limits
are in the order of tens of kilometers over fibre channel.

4

An alternative solution is to use a coordinated-commit replication engine - a combination of
asynchronous- and synchronous-replication technologies - to eliminate the problems of data loss
and data collisions and to mitigate the effects of application latency.

In this article, we review SG and its application to coordinated commits.

The Two-Phase Transaction-Commit Protocol

Before we delve into SG, let us review the two-phase commit protocol (2PC) used by transaction
managers such as TMF to ensure the ACID properties

5
of transactions. 2PC is defined by the XA

specification of the X/Open Group for Distributed Transaction Processing (DTP).
6

1 What is Active/Active?, Availability Digest; October 2006.
2 Chapter 4, Synchronous Replication, Breaking the Availability Barrier, AuthorHouse; 2004.

Synchronous Replication, Availability Digest; December, 2006.
Synchronous Replication: Pros, Cons, and Myths, The Connection; November/December, 2008.

3 Asynchronous Replication Engines, Availability Digest; November 2006.
4 Through the use of a remote mirror, ZLT (Zero Lost Transactions) allows NonStop nodes to be separated by arbitrary
distances without loss of transactional data due to a node loss when using RDF to asynchronously replicate data.
However, the remote mirror separation is limited to a few kilometers, limiting the degree of disaster tolerance that can be
provided. Furthermore, the RDF/ZLT solution does not support active, as the target database cannot be opened for writes.
5 The ACID properties of a transaction are atomicity, consistency, independence, and durability. See J. Gray, A. Reuter,
Transaction Processing: Concepts and Techniques, pp. 6-7, Morgan Kaufmann Publishers; 1993.
6 Distributed Transaction Processing: The XA Specification, The Open Group; 1991.

http://www.availabilitydigest.com/


© 2009 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

2

As shown in Figure 1, the X/Open DTP model comprises five components:

 application programs.
 a Transaction Manager (TM).
 resources such as disks, queue

managers, or applications.
 Resource Managers (RMs) that hide the

attributes of resources.
 a transaction log (Tx Log).

Applications use resources such as databases or
queues. Each resource is managed by a
Resource Manager (RM). The RMs hide the
details of their resources from the applications
and from the Transaction Manager (TM) by
providing a common interface used by the other
components.

When an application begins a transaction (1), the TM assigns the transaction an ID and monitors
its progress, taking responsibility for its success or failure. All changes to a resource such as to a
database (2) are typically logged in a transaction log by the TM (3). The transaction log provides
the change information necessary should a transaction abort and need to be backed out or
should a system fail and its database require reconstruction.

The TM has a particularly important responsibility at commit time. When the application directs
the TM to commit a transaction (1), the TM first queries each RM to ensure that it is prepared to
commit the transaction (4). This is Phase 1 of the two-phase commit protocol, the prepare phase.
An RM will respond positively to the prepare query (that is, it votes “yes” for the commit) only if it
has safe-stored or has tentatively applied the change data for the transaction to the target
database, thereby assuring that the RM can ultimately make all of the transaction’s changes to
the database.

If all RMs reply that they can commit the transaction, the TM issues a commit directive to all RMs
(4). This is Phase 2 of the 2PC, the commit phase. When an RM receives a commit directive, it
commits the changes to the database.

Alternatively, if any RM votes “no” because it cannot make the transaction’s changes, the TM
issues an abort directive to all RMs. Each RM either makes no changes, or it rolls back the
transaction’s changes if it has already tentatively applied them to the database. The transaction
has no effect on the database.

Volatile-Resource Managers

Normally, a resource manager not only participates in the 2PC protocol, but it also engages in the
TM’s recovery process. The recovery process is used to recover the resource (such as a
database) following a failure that may have left the resource in a corrupted or inconsistent state.
However, there is a class of resource managers called volatile-resource managers (VRMs) that
participate in the 2PC protocol but not in the recovery process. A VRM manages a volatile
resource that is assumed to be nondurable and therefore does not benefit from recovery. In SG,
foreign resource managers are treated as VRMs. If they, in fact, are durable, they are responsible
for their own recovery.

application

Transaction
Manager

(2)

(1)

(3)

The X/Open Distributed Transaction
Processing Model

Figure 1

Tx
Log

(4)

RM

resources



© 2009 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

3

A third-party application like a synchronous-replication engine that participates in TMF
transactions is treated as a VRM. TMF enforces this so that third-party applications cannot
prevent TMF from restarting following a failure because it cannot recover its database.

The HP Synchronous Gateway

Interacting with TMF

Though HP NonStop systems follow the X/Open DTP model, they are not XA-compliant.
Specifically, they do not use the XA API; and they do not support heterogeneous databases.
Historically, their TM, known as the Transaction Management Facility, or TMF, supported only
Enscribe and NonStop SQL RMs. Other Resource Managers could not participate in a TMF
transaction.

HP has recently announced its NonStop Synchronous Gateway (SG) (code-named “Open TMF”
or OTMF during development). SG provides the facilities for a foreign resource not classically
supported by TMF to participate in TMF transactions via a Volatile Resource Manager (VRM).
Though under the X/Open DTP model, Resource Managers are external to the TM, HP has
implemented SG so that the VRM state machine is a part of TMF. SG requires a gateway process
that is an interface to the foreign resource. The gateway process communicates with TMF via the
VRM supplied by TMF.

SG is a library that provides
an API for use by a gateway
to communicate with TMF.
As shown in Figure 2, the
library uses a Resource
Manager pseudo-file (RM
file) to identify the gateway
and to exchange TMF
signals (messages) between the gateway and the VRM via library API calls and several standard
Guardian procedures. A gateway process may have multiple RM files open – this can be useful if
the gateway must manage more simultaneous transactions than a single VRM can process.
However, an RM file can be opened by only one gateway.

Communication between a VRM and a gateway is via TMF signals (messages) that indicate
requests, responses, and state changes. A gateway writes to the RM file to deliver signals to TMF
via the VRM, and it posts a read on the RM file to receive signals from TMF.

There is at least one RM file associated with each gateway. Before a gateway can communicate
with TMF, it must open an RM file. RM files are opened with a sync depth of 1 so that gateway
reads from the file can be waited or nowaited.

Signals

TMF signals are used by TMF to communicate with all Resource Managers. They include, among
others:

 TMF_SIGNAL_EXPORT_DONE: A nowaited request to the VRM from the gateway
to join a transaction has completed.

 TMF_SIGNAL_REQUEST_PREPARE: The VRM is requesting the gateway to vote
on the outcome of the transaction.



© 2009 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

4

 TMF_SIGNAL_READ_ONLY: The gateway indicates to the VRM that the gateway
had no work to do and is leaving the transaction.

 TMF_SIGNAL_READY: The gateway is indicating to the VRM that the gateway’s
transaction is prepared to commit.

 TMF_SIGNAL_REQUEST_COMMIT: The VRM is indicating to the gateway that the
transaction has been committed.

 TMF_SIGNAL_REQUEST_ROLLBACK: Either the VRM or the gateway is indicating
that the transaction should be aborted. The signal also carries the reasons for the
abort.

 TMF_SIGNAL_FORGET: The gateway is informing the VRM that the gateway has
completed processing the transaction.

Abort reasons signaled by TMF_SIGNAL_REQUEST_ROLLBACK include:

 communication failure
 deadlock
 integrity violation
 protocol error
 timeout
 transient
 unspecified

TMF also generates signals to notify the VRMs about significant TMF state changes. The signals
are:

 TMF_SIGNAL_TMF_ENABLED: TMF is started, and BEGINTRANSACTION is
enabled.

 TMF_SIGNAL_TMF_DISABLED: BEGINTRANSACTION has been disabled.

 TMF_SIGNAL_TMF_DOWN: TMF has crashed or has shut down.

API

The TMF API is simple. It contains only six calls.

 OTMF_VOL_RM_OPEN: Opens a VRM file. A VRM file must be open before the
gateway process can communicate with the VRM. As soon as the file is opened, the
gateway is informed as to whether TMF is enabled, disabled, or down. The file can
be closed via a standard file close call.

 OTMF_EXPORT: Allows the gateway to participate in a transaction.

 OTMF_EXPORT_ASYNC: Allows the gateway to make a no-waited request to the
VRM to participate in a transaction. The request’s completion is indicated by the
receipt of a TMF_SIGNAL_EXPORT_DONE signal.

 OTMF_WRITE_SIGNAL: Used by the gateway to send a signal to the VRM via the
RM file.



© 2009 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

5

 OTMF_WAIT_SIGNAL: Waits for a signal from a VRM following a READX on the
RM file.

 OTMF_INTERPRET_SIGNAL: Interprets a signal returned in a call to AWAITIOX
instead of a call to OTMF_WAIT_SIGNAL. Instead of calling OTMF_WAIT_SIGNAL
and blocking waiting for the signal, the gateway can call AWAITIOX instead, allowing
other I/O completions to be processed as they complete. OTMF_INTERPRET_
SIGNAL is then called to parse the data sent by the VRM.

SG State Transitions

A state diagram for SG is shown in Figure 3, which shows state transitions from the viewpoint of
the VRM and the gateway. In this figure, “send” means sending a signal to TMF via
OTMF_WRITE_SIGNAL, and “receive” means receiving a signal from TMF via a nowaited
READX/AWAITIOX/OTMF_INTERPRET_SIGNAL sequence or a waited READX/OTMF_WAIT_
SIGNAL sequence.

When the gateway wants to join a transaction, it does so via the OTMF_EXPORT API call.
Among other parameters, it provides the ID of the transaction that it wishes to join. The EXPORT
call can either be waited or nowaited. OTMF_EXPORT is the waited call. If a nowaited call is
desired, OTMF_EXPORT_ASYNC is called for a nowaited export. When the export has
completed, the gateway will be notified by a TMF_SIGNAL_EXPORT_DONE signal. At the
completion of the export, the gateway enters the active state.

While in the active state, the gateway posts to the RM file a read that listens for a signal from
TMF. At the end of the transaction, when TMF has received a commit request call from the
application (e.g., via the application calling ENDTRANSACTION or via an SQL program calling
COMMIT WORK), it sends to all RMs a TMF_SIGNAL_REQUEST_PREPARE signal asking them
to vote on the transaction. This begins the prepare phase (the first phase) of the 2PC protocol.

The gateway enters the preparing state at this point. It checks to see if it is in a position to
guarantee that it can complete the transaction (that is, it has acquired all locks; and all updates
have been safe-stored or tentatively applied). If so, it responds to TMF with a
TMF_SIGNAL_READY signal.

If TMF receives a TMF_SIGNAL_READY signal from all of the RMs that have joined the
transaction, it enters the commit phase of the 2PC protocol and sends a
TMF_SIGNAL_REQUEST_COMMIT to all RMs. Upon receipt of this signal, the gateway will
commit the transaction and will respond with a TMF_SIGNAL_FORGET signal, indicating that it
has received the commit and is leaving the transaction.

If the gateway cannot commit the transaction, at the end of the prepare phase it will send a
TMF_SIGNAL_REQUEST_ROLLBACK signal to TMF. If TMF receives a TMF_SIGNAL_
REQUEST_ ROLLBACK signal from any of the RMs involved in the transaction, it will abort the
transaction by sending a TMF_SIGNAL_REQUEST_ROLLBACK signal to all RMs.

Should the gateway detect a fatal error in transaction processing while it is either in the active
state or in the preparing state, it may immediately abort its transaction and send a TMF_SIGNAL_
REQUEST_ROLLBACK signal to TMF, causing TMF to abort the transaction with all RMs.

Upon entering the preparing state, if the gateway has received no work to do during the
transaction, it returns a TMF_SIGNAL_READ_ONLY signal and leaves the transaction.



© 2009 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

6

done
end
txsend

READ_ONLY

preparing

failed

prepared

committed aborted

exporting

active

begin
tx

send
OTMF_EXPORT_ASYNC

send
OTMF_EXPORT

receive
EXPORT_DONE

receive
REQUEST_PREPARE

send or receive
REQUEST_ROLLBACK

send
READY

receive
REQUEST_COMMIT

receive
REQUEST_COMMIT

receive
REQUEST_ROLLBACK

forgotten

send
FORGET

end
tx

end
tx

Transaction State Transitions
for

Volatile Resource Manager
Figure 3

receive
TMF_DOWN



© 2009 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

7

SG and Coordinated-Commit Replication

Let us use the coordinated-commit protocol
7

as an example to illustrate the application of the SG
API to synchronous replication. An asynchronous-replication engine suffers from the possibility of
lost data following a source-node failure and from data collisions when running in an active/active
environment. A synchronous-replication engine suffers from increased transaction-response time
due to application latency as it waits for each operation to complete across the network. A
coordinated-commit replication engine is an interesting combination of asynchronous and
synchronous replication technology that eliminates data loss and data collisions while minimizing
application latency.

The Coordinated-Commit Protocol

With coordinated commits, when the application starts a transaction, the coordinated-commit
replication engine participates in the transaction via the SG API through a VRM. Asynchronous
replication is used to replicate updates to the target database, locking the data objects as it does
so. Thus, there is no additional latency imposed upon the application during this process.
However, transaction commit is synchronous. As a result, no data is lost should the source node
fail. Likewise, since all data objects are locked at both the source and target databases until
commit time, there can be no data collisions. Application latency only occurs as the source
system waits for the replication engine to vote rather than after every update that has been issued
by the source system, as is the case with classical synchronous replication.

The coordinated-commit
protocol is shown in Figure 4 as
it would be implemented on a
NonStop server. The
coordinated-commit replication
engine is a VRM gateway. Both
TMF and the replication engine
are informed when the
application begins a transaction
(1a). At this point, the
replication engine requests that
it join the transaction (2). This
lets it vote on the outcome. It
also requests that TMF on the
target system begin an
independent transaction (1b),
one that is local to the target
environment.

As the application issues
updates (3a), they are written to
the DP2 disk processes (3b)
that are the RMs for the NonStop disks. Updates are also written to the TMF audit log. The
replication engine reads the updates from the audit log (3c) and replicates them to the target
database, where they are tentatively applied.

When the application issues a Commit directive (4), TMF sends Prepare signals in parallel to all
of its Resource Managers (5a), including the VRMs (the replication engine in this case) (5b). This

7 B. D. Holenstein, P. J. Holenstein, G. E. Strickler, Collision avoidance in data replication systems, U. S. Patent
7,103,586; September 5, 2006.

B. D. Holenstein, P. J. Holenstein, W. H. Highleyman, Asynchronous coordinated commit replication and dual write with
replication transmission and locking of target database on updates only, U. S. Patent 7,177,866; February 13, 2007.

application

3c. updates

1a. begin tx

2. join tx

replication

engine (VRM)

6b. ready
3a. updates

8. tx
committed

Coordinated Commit Replication
Figure 4

3b. updates
5a. prepare
7a. commit

6a. ready

audit
log

TMF
(Transaction

Manager)

target
db

sourc
e

db

sourc
e

db

sourc
e

db

source
db

DP2
(RM)

5b. prepare

7b. commit

4. commit

1b. begin tx



© 2009 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

8

is the prepare phase of the two-phase commit protocol. The Resource Managers check that they
have safe-stored or tentatively applied all updates within the scope of the transaction and if so
reply with a “yes” vote - a Ready signal (6a, 6b) - to TMF. If all RMs have voted “yes,” TMF sends
a Commit signal (7a, 7b) to all RMs – the commit phase - and notifies the application that its
transaction has been committed (8).

If any RM cannot commit the transaction, it votes “no;” and TMF will send a Rollback signal to all
RMs, informing them to abort the transaction.

Should a target database failure occur, it is the responsibility of TMF on the target system to
recover the target database.

Mapping Coordinated-Commit Replication to the SG API

The use of the SG API and TMF signals to implement a coordinated-commit replication engine in
a NonStop environment is shown in Figure 5. As in Figure 3, “send” means sending a signal via
OTMF_WRITE_SIGNAL, and “receive” means receiving a signal via a READX/
OTMF_WAIT_SIGNAL or a READX/AWAITIOX/OTMF_INTERPRET_SIGNAL sequence.

Begin Transaction

When an application issues a begin transaction, it notifies the coordinated-commit replication
engine via an interface provided by the replication engine. The replication engine joins the
transaction via the OTMF_EXPORT or OTMF_EXPORT_ASYNC API call. At this point, the VRM
enters the active state.

Replicate Updates

While in the active state, the replication engine asynchronously replicates updates by extracting
changes from the TMF audit trail via ARLIB, the Audit Reader Library provided by TMF. Each
update is buffered and sent over the replication channel to the target database, where it is
tentatively applied awaiting a commit directive.

receive REQUEST_
PREPARE

application

active

receive begin tx
from application

EXPORT

read ARLIB

receive update

receive REQUEST_
PREPARE

receive REQUEST_
COMMIT

preparing

prepared

send READY send FORGET

forget

committed

Begin Transaction Replicate Updates Vote
(application latency)

Commit

receive REQUEST_
ROLLBACK

aborted

Abort

The Use of the SG API by a Coordinated-Commit Replication Engine
Figure 5

replicate update



© 2009 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

9

Vote (the Prepare Phase)

When the replication engine receives a TMF_SIGNAL_REQUEST_PREPARE signal from TMF, it
enters the preparing state. It waits until it can confirm that all of the updates within the scope of
the transaction have been tentatively applied to the target database, and it then returns a
TMF_SIGNAL_READY signal to TMF. This delay is the application latency added by coordinated-
commit replication. At this point, the replication engine enters the prepared state. If the replication
engine is unable to commit the transaction at the target database, it returns a
TMF_SIGNAL_REQUEST_ROLLBACK signal instead, which causes the transaction to be
aborted (not shown in Figure 3).

Commit/Abort (the Commit Phase)

When the replication engine receives a TMF_SIGNAL_REQUEST_COMMIT or
TMF_SIGNAL_REQUEST_ROLLBACK signal in the prepared state, it can initiate the appropriate
target-side processing and immediately send a TMF_SIGNAL_FORGET signal to complete the
source-side transaction.

Summary

The SG API allows TMF to safely support gateways to foreign resources through volatile-
resource managers. This capability allows replication engines to be integrated with TMF so that
updates to remote databases can be synchronously replicated.

8

8 The material for this article is taken in part from the article Achieving Century Uptimes – Part 17: HP Unveils is
Synchronous Replication API for TMF, The Connection; July/August 2009.


	www.availabilitydigest.com
	The Two-Phase Transaction-Commit Protocol
	Volatile-Resource Managers
	The HP Synchronous Gateway
	Interacting with TMF
	Signals
	API
	SG State Transitions

	SG and Coordinated-Commit Replication
	The Coordinated-Commit Protocol
	Mapping Coordinated-Commit Replication to the SG API
	Begin Transaction
	Replicate Updates
	Vote (the Prepare Phase)
	Commit/Abort (the Commit Phase)

	Summary

